Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
R. V. Krishnakumar, ${ }^{\text {a }}$ V. Vijayakumar, ${ }^{\text {b }}$ M. Sundaravadivelu, ${ }^{\text {b }}$ S. Natarajan, ${ }^{\text {c* }}$ S. Perumal ${ }^{\text {d }}$ and S. Selvaraj ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Physics, Thiagarajar College, Madurai 625 009, India, ${ }^{\text {b }}$ Department of
Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India,
${ }^{\text {c }}$ Department of Physics, Madurai Kamaraj University, Madurai 625 021, India, and
d Department of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: xray@mrna.tn.nic.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.066$
$w R$ factor $=0.191$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

4,8,9,10-Tetrakis(4-methoxyphenyl)-1,3-diaza-adamantan-6-one benzene solvate

Mirror symmetry is retained in the crystals of the title compound, $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$. The trapping of the solvent (benzene) molecule in the crystal lattice as space filler with no strong interactions with the solute molecule presumably plays an important role in the retention of molecular site symmetry. The crystal structure is stabilized by van der Waals interactions.

Comment

Crystallographic studies on symmetrically shaped molecules, with a view to understanding the nature and strength of intermolecular interactions, are expected to provide information regarding their role in effecting symmetry carry-over from the free state to the solid and obtain information about specific interactions. The symmetry of a molecule in the solid state is often found to be less than that observed in the free state as the molecules tend to pack as closely as possible upon crystallization (Kitaigorodskii, 1973), giving rise to a variety of intermolecular interactions. While an inversion centre is often carried over into the crystal, the retention of mirror or twofold symmetry by molecules seems to depend on the presence, nature and strength of the intermolecular interactions. The present crystal structure, (I), is a good example of the retention of mirror symmetry by a molecule in the crystal state.

Fig. 1 shows the crystallographic numbering scheme adopted. All four six-membered rings which constitute the diazaadamantanone cage adopt the chair conformation which is the most preferred conformation for adamantanes, irrespective of substitution. The molecule is bisected by a mirror plane passing through atoms $\mathrm{C} 2, \mathrm{~N} 1, \mathrm{~N} 3, \mathrm{C} 10$ and O 11 of the diazaadamantanone cage. The solvent benzene molecule is trapped in the crystal lattice and held inside the channel running along the c axis by van der Waals interactions (Fig. 2). In the absence of $\mathrm{C}-\mathrm{H} \cdots X$-type hydrogen bonds, the solvent molecule presumably plays a role in optimizing packing efficiency within the lattice. The absence of $\mathrm{C}-\mathrm{H} \cdots X$-type interactions may be attributed to the deficiency of acceptors

Received 28 February 2001
Accepted 1 March 2001
Online 9 March 2001
compared to donors (phenyl C-H) whose presence otherwise might have had a considerable influence on the molecular conformation.

Experimental

Colourless single crystals were obtained as transparent needles by slow evaporation of a benzene solution at room temperature.

Crystal data

$\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{5} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$
$M_{r}=654.78$
Orthorhombic, Pnma
$a=16.6240$ (5) \AA
$b=26.0007$ (16) \AA
$c=8.2207(7) \AA$
$V=3553.3(4) \AA^{3}$
$Z=4$
$D_{x}=1.224 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-\theta$ scans
Absorption correction: ψ scan (North et al., 1968) $T_{\text {min }}=0.864, T_{\text {max }}=0.892$
3401 measured reflections
3401 independent reflections
2226 reflections with $I>2 \sigma(I)$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=16-26^{\circ}$
$\mu=0.64 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needles, colourless $0.33 \times 0.22 \times 0.18 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.191$
$S=1.13$
3401 reflections
230 parameters
H -atom parameters constrained
$R_{\text {int }}=0.010$
$\theta_{\text {max }}=70.0^{\circ}$
$h=0 \rightarrow 20$
$k=0 \rightarrow 31$
$l=0 \rightarrow 10$
2 standard reflections every 200 reflections intensity decay: 0.1%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0399 P)^{2}\right. \\
& +6.1627 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.29 \mathrm{e}_{\mathrm{m}}{ }^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.00090 \text { (11) }
\end{aligned}
$$

Figure 1
ORTEP diagram (PLATON; Spek, 1999) with displacement ellipsoids drawn at the 40% probability level showing the numbering scheme adopted.

The authors (SN and SP) thank the Council of Scientific and Industrial Research (CSIR), India, for financial assistance. The authors also thank UGC for the DRS programme and the Bio-informatics Centre, Madurai Kamaraj University, for providing access to the Cambridge Structural Database (Allen \& Kennard, 1993).

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Kitaigorodskii, A. I. (1973). In Molecular Crystals and Molecules. New York: Academic Press.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.

Figure 2
Figure showing the solvent benzene molecule trapped inside channels running along the c axis.

